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Preface 

As a part of the solution to the constant demand for higher data rates, wireless communications 

are moving towards higher and higher frequencies including mmWave and THz bands. At the same time 

quantum physics is experimenting with quantum state transmission over sub-optical, THz and even much 

lower bands. In the anticipation of the development of quantum computer networks and quantum key 

distribution QKD over wireless networks, there is a need for design tools that will enable optimization of 

the heterogeneous networks that will seamlessly merge these two technologies as much as possible. 

At the same time, these networks will relay more and more on artificial intelligence so that further research 

is needed to integrate classical and quantum machine learning algorithms which is the focus of this report.  

In general quantum technology can use either discrete (dv) or continuous (cv) variable information 

processing, where variables are modeled in the space of finite or infinite dimensions respectively. While 

the former option, used in our recent book, is used for systematic introduction to the field of quantum 

computing the latter is more feasible for practical implementation and for this reason is in the focus of this 

book. 

In this series of reports, we make an effort to provide a summary of an impressive work done so far 

by the quantum physics, computer science and artificial intelligence researchers and elaborate why and 

how it should serve as a basis for coming up with the solutions for integrated heterogeneous networks as 

defined above. We believe that 7G wireless networks will be based on this concept although the step-by-

step application of this technology is already being proposed for 5G and will be seen in 6G as well.  

When it comes to using the report for undergrade and postgraduate courses we incorporate a 

number of DESIGN EXAMPLES to replace the classical concept of using “problems and solutions” 

addendums at the end of the chapters/book. This enables using more sophisticated assignments for the 

teamwork of the students. Our students have shown great enthusiasm for such approach.  

In addition to universities the professionals in research, industry and regulatory institutions should 

benefit from the comprehensive coverage of the report. 

Author                                                                                                          Amherst, Massachusetts   

March 2022 
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Ch 1 INTRODUCTION  
1.1 Structure of the report 

 
We present the overall material of the report within five chapters and in what follows we briefly 

summarize the content of these chapters.  

Ch 2 ADVANCES IN ML: In real life, every experience or decision made, increase the human’s knowledge, 

so that when next time faced with a similar question human can decide more efficiently. On the other hand, 

ML algorithms described so far have in common that they reset the learning process back to the beginning 

once they face a new problem to learn. Lifelong machine learning (lifelong ML or LML) is an advanced 

machine learning paradigm that learns continuously, accumulates the knowledge learned in previous tasks, 

and uses it to help future learning. In other words, at any time point, the learner has performed a sequence 

of 𝑁 learning tasks, 𝒯1, 𝒯2, . . . , 𝒯𝑁. These tasks, which are also called the previous tasks, have their 

corresponding datasets 𝒟1, 𝒟2, . . . , 𝒟𝑁. The tasks can be of different types and from different domains. 

When faced with the (𝑁 + 1)th task 𝒯𝑁+1 with its data 𝒟𝑁+1, the learner can leverage the past knowledge 

in the knowledge base (KB) to help learn 𝒯𝑁+1. The objective of LML is usually to optimize the performance 

on the new task 𝒯𝑁+1, but it can optimize on any task by treating the rest of the tasks as the previous tasks. 

KB maintains the knowledge learned and accumulated from learning the previous tasks. After the 

completion of learning 𝒯𝑁+1, KB is updated with the knowledge gained from learning 𝒯𝑁+1. The updating 

can involve consistency checking, reasoning, and meta‐mining of additional higher‐level knowledge. A 

number of related problems and solutions in the implementation of this concept is detailed in this chapter. 

 Here we also discuss the concept of federated learning as proposed by Google recently. Their main idea is 

to build machine learning models based on data sets that are distributed across multiple devices while 

preventing data leakage. 

         Let us denote by 𝑁 data owners {ℱ1, … ℱ𝑁  }, all of whom wish to train a machine learning model by 

consolidating their respective data {𝒟1, … 𝒟𝑁  }. A conventional method is to put all data together and use 

𝒟 = 𝒟1 ∪ ∪ 𝒟𝑁 to train a model ℳ𝑆𝑈𝑀. A federated learning system is a learning process in which the 

data owners collaboratively train a model ℳ𝐹𝐸𝐷, in which process any data owner ℱ𝑖 does not expose its 

data 𝒟𝑖 to others. In addition, the accuracy of ℳ𝐹𝐸𝐷, denoted as 𝒱𝐹𝐸𝐷 should be very close to the 

performance of ℳ𝑆𝑈𝑀 , 𝒱𝑆𝑈𝑀. Formally, let 𝛿 be a non‐negative real number, if |𝒱𝐹𝐸𝐷 − 𝒱𝑆𝑈𝑀| < 𝛿  we 

say the federated learning algorithm has 𝛿‐accuracy loss. 

 

Ch 3 DEEP NEURAL NETWORKS: The chapter discusses four relevant topics mainly: Optimization 

Algorithm Approximation by DNN, Spatial Scheduling by DNN, Spatial Scheduling by DNN with 

Proportional Fairness and DNN in Vehicular Networks. 

Optimization algorithms often entail considerable complexity, which creates a serious gap between 

theoretical design/analysis and real‐time processing. In the first section of the chapter, we present a 

learning‐based perspective to address this challenging issue. The key idea is to treat the input and output of 

an SP algorithm as an unknown nonlinear mapping and use a deep neural network (DNN) to approximate 

it. If the nonlinear mapping can be learned accurately by a DNN of moderate size, then SP tasks can be 

performed effectively—since passing the input through a DNN only requires a small number of simple 

operations. Here, we first identify a class of optimization algorithms that can be accurately approximated 

by a fully connected DNN. To demonstrate the effectiveness of the approach, we apply it to approximate a 

popular interference management algorithm. 



The optimal scheduling of interfering links in a dense wireless network with full frequency reuse is a 

challenging task. The traditional method involves first estimating all the interfering channel strengths and 

then optimizing the scheduling based on the model. However, this approach is, resource intensive and 

computationally hard because channel estimation is expensive in dense networks; furthermore, finding even 

a locally optimal solution of the resulting optimization problem may be computationally complex. In the 

second section of the chapter, we show that by using a deep learning approach, it is possible to bypass the 

channel estimation and to schedule links efficiently based solely on the geographic locations of the 

transmitters and the receivers because in many propagation environments, especially in dense networks, 

the wireless channel strength is largely a function of the distance dependent path‐loss. This is accomplished 

by unsupervised training over randomly deployed networks and by using a neural network architecture that 

computes the geographic spatial convolutions of the interfering or interfered neighboring nodes along with 

subsequent multiple feedback stages to learn the optimum solution. The resulting neural network gives a 

near optimal performance for sum‐rate maximization and is capable of generalizing to larger deployment 

areas and to deployments of different link densities. To provide fairness, here we present a scheduling 

approach that utilizes the sum‐rate optimal scheduling algorithm over judiciously chosen subsets of links 

for maximizing a proportional fairness objective over the network. The approach shows highly competitive 

and generalizable network utility maximization results. 

 In the previous section, we focus on scheduling with the sum‐rate objective, which does not include a 

fairness criterion, thus tends to favor shorter links and links that do not experience large amount of 

interference. Practical applications of scheduling, on the other hand, almost always require fairness. In the 

third section, we first illustrate the challenges in incorporating fairness in spatial deep learning, then present 

a solution that takes advantage of the existing sum‐rate maximization framework to provide fair scheduling 

across the network. 

 For autonomous driving the freshness (age) of information (AoI) about the vehicular network state is of 

paramount importance and proper network resource allocation aware of the AoI is the major technical issue 

in this field. In the fourth section of the chapter we will discuss the problem modelling and possible 

solutions based on DNN.  

Ch 4 QUANTUM MACHINE LEARNING 

                 Like the progression of classical deep learning, the first forms of quantum neural networks to be 

studied were Boltzmann machines. In classical machine learning, some of the work first incorporating 

backpropagation was in the context of deep networks of coupled spinlike neurons called Deep Boltzmann 

Networks . On the quantum side, analog quantum computers allowed for a physical implementation of 

networks of qubits whose statistics mimic those of Boltzmann machines . This general avenue of research 

focused on determining whether quantum computers can accelerate the training of classical neural network 

models. Due to the possibility of superpositions of the joint state of the neurons, and thereby of quantum 

tunneling in the energy landscape, it was hoped that Quantum Annealing could provide a speedup over 

classical annealing optimization methods for such neural network models. Despite early claims of a speedup 

, certain bottlenecks such as the embedding problem, qubit quality, and thermal noise would obscure 

whether there could truly be a quantum advantage for Quantum Annealing, especially with the advent of 

quantum‐inspired classical algorithms designed to compete with these machines. 

In this chapter we provide a comprehensive approach to training classical neural networks on a quantum 

computer for the purposes of classical data learning. All techniques make use of superposition and 

entanglement, and some techniques employ tunneling directly. We also provide an in‐depth analysis of 

quantum backpropagation of the error signal in these quantum‐coherent neural networks, thus explicitly 



relating quantum and classical backpropagation. The chapter explicitly addresses the problems of:  

Quantum Neural Networks with DV, Quantum Neural Networks with CV, Quantum Parametric 

Optimization, Quantum Neural Network Learning, Quantum Parametric Circuit Learning and Quantum 

Deep Convolutional Neural Networks 

Ch 5 REINFORCEMENT LEARNING based QN PROTOCOLS 

                 Considering a quantum network, as opposed to just one line between a sender and a receiver, is 

a much more complicated setting that leads to questions about, e.g., routing (see Chapter 7 and multicast 

communication (simultaneous communication between several senders and receivers). Consequently, 

protocols in a general quantum network can be much more varied than protocols along a linear chain of 

nodes. As done in classical networking, it is possible to develop a so‐called “quantum network stack”, 

which divides the various steps of a quantum network protocol into distinct layers of functionality. Along 

these lines, quantum network protocols have been described from an information‐theoretic perspective in ,  

and limits on communication in quantum networks have been explored . Linear programs, and other 

techniques for obtaining optimal entanglement distribution rates in a quantum network, have been explored 

as well. 

To physically realize quantum networks, and the quantum internet more generally, the continual challenge 

is to bridge theoretical statements about what can be achieved to statements that are directly useful for the 

purpose of implementation. This link between theory and reality should also take into account the 

limitations of current and near‐term quantum technologies, which include imperfect sources of 

entanglement, quantum memories with relatively low coherence times, and imperfect measurements and 

gate operations. Many of the theoretical works do not explicitly take these practical limitations into account. 

What is currently lacking is a formal theoretical framework for quantum network protocols that incorporates 

both the limitations of near-term quantum technologies and is general enough to allow for optimization of 

protocol parameters. The purpose of this chapter is to present some efforts to begin such a development. 

This include discussion on: Quantum Network Protocols, Summary of the analytical tools 

Quantum Link Layer Protocol, Reinforcement Learning-based quantum decision processes and Quantum 

Networks. 
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