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Preface: The research and practical results on Quantum computers in the recent years have given a major setback to 

classical and widely used cryptography schemes such as 𝑅𝑆𝐴 (Rivest‐Shamir‐Adleman) Algorithm and ECC (Elliptic 

Curve Cryptography). RSA and ECC depend on integer factorization problem and discrete logarithm problem 

respectively, which can be easily solved by Quantum Computers of sufficiently large size running the infamous Shor’s 

Algorithm. Therefore, cryptography schemes which are difficult to solve in both traditional as well as Quantum 

Computers need to be evaluated. This series of reports provides a detailed survey on Post‐Quantum Cryptography 

schemes and emphasizes on their applicability to provide security in constrained devices. A comprehensive insight is 

provided into the schemes which could possibly replace RSA and ECC for security in constrained devices. 

 While post‐quantum cryptography is an effort to develop novel classical cryptosystems which are robust to 

factorization and other quantum algorithms, which is certainly one option, this does not completely solve the problem. 

The point is that there may be undiscovered quantum algorithms (or undiscovered classical ones) that might easily break 

the security of the new cryptosystems. In other words, postquantum cryptography is likely to offer only a partial and 

temporary solution to the problem. By contrast, quantum key distribution (QKD), discussed also in this series, offers the 

ultimate solution: restoring security and confidentiality by resorting to unbreakable principles of nature, such as the 

uncertainty principle or the monogamy of entanglement. 
            Even though QKD offers the ultimate solution to the security problem, its ideal implementation is hard to 

implement in practice and there are a number of open problems to be addressed. On one side, fully‐device independent 

QKD protocols provide the highest level of quantum security, but they are quite demanding to realize and are 

characterized by extremely low secret key rates. On the other hand, more practical QKD protocols assume some level of 

trust in their devices, an assumption that allows them to achieve reasonable rates, but this also opens the possibility of 

dangerous side‐channel attacks. 

           Besides a trade‐off between security and rate, there is also another important one which is between rate and 

distance. Today, we know that there is a fundamental limit which restricts any point to point implementation of QKD. 

Given a lossy link with transmissivity 𝜂, two parties cannot distribute more than the secret key capacity of the channel, 

which is −𝑙𝑜𝑔2(1 − 𝜂) , i.e., 𝑎 scaling of 1.44𝜂 secret bits per channel use at long distance. Ideal implementations of 

QKD protocols based on continuous‐variable systems and Gaussian states may approach this capacity , while those based 

on discrete variables falls below by additional factors. To overcome this limit and enable long‐distance high‐rate 

implementations of QKD, we need the develop quantum repeaters and quantum networks . In this way, we may achieve 

better long‐distance scaling and further boost the rates by resorting to more complex routing strategies. The study of 

quantum repeaters and secure QKD networks is one of the hottest topics today which is also covered in this series. The 

series aims at providing an overview of the most important and most recent advances in the field of quantum 

cryptography, both theoretically and experimentally. 

           In near term, we expect that quantum security and QKD will be competing with so called post quantum security 

solutions and for this reason in a separate report of this series we discuss in details pros and cons of each technology. 

Design solutions and quantum physics are covered in this report.    

         When it comes to using the book for undergrade and postgraduate courses we incorporate a number of DESIGN 

EXAMPLES in each report to replace the classical concept of using “problems and solutions” addendums at the end of 

the chapters/book. This enables using more sophisticated assignments for the teamwork of the students. Our students have 

shown great enthusiasm for such approach.  

        In addition to universities the professionals in research, industry and regulatory institutions should benefit from the 

comprehensive coverage of different report of the series. 

 

Author, March 2022                                                                                    Amherst, Massachusetts, 
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Ch1 INTRODUCTION    
               
1.1  Structure of the book 
Given the above objective, we present the overall material of the book within 5 chapters and in what follows we briefly 

summarize the content of these chapters.  

Ch 2 QUANTUM COMPUTING GATES LIBRARIES The circuit model of a computer is an abstraction of the computing 

process and is widely used in the design and construction of practical computing hardware. In the circuit model, any 

computation is regarded as being equivalent to the action of a circuit built out of a handful of different types of Boolean 

logic gates acting on some binary (i.e., bit string) input. Each logic gate transforms its input bits into one or more output 

bits in some deterministic fashion according to the definition of the gate. By composing the gates in a graph such that the 

outputs from earlier gates feed into the inputs of later gates, it can be proven that any feasible computation can be 

performed. Here we will talk about the types of logic gates used within circuits and how the notions of logic gates need to 

be modified in the quantum context. 

Ch 3 Q MEMORIES Quantum memories are a fundamental of any global‐scale quantum Internet. Although quantum 

repeaters can be realized without the necessity of quantum memories, these units, in fact, are required for guaranteeing an 

optimal performance in any high-performance quantum networking scenario. Therefore, the utilization of quantum 

memories still represents a fundamental problem in the quantum Internet, since the near‐term quantum devices (such as 

quantum repeaters) and gate‐model quantum computers have to store the quantum states in their local quantum memories . 
The main problem here is the efficient readout of the stored quantum systems and the low retrieval efficiency of these 

systems from the quantum registers of the quantum memory. Currently, no general solution to this problem is available, 

since the quantum register evolves the stored quantum systems via an unknown operation, and the input quantum system 

is also unknown, in a general scenario. The optimization of the readout procedure is therefore a hard and complex 

problem. Several physical implementations have been developed in the last few years . However, these experimental 

realizations have several drawbacks, in general because the output signal‐to‐noise ratio (SNR) values are still not 

satisfactory for the construction of a powerful, global‐scale quantum communication network. As another important 

application field in quantum communication, the methods of quantum secure direct communication ‐ also require quantum 

memory. 

Here, we discuss a specific quantum memory called high‐retrieval‐efficiency (HRE) quantum memory for near‐term 

quantum devices. An HRE quantum memory unit integrates local unitary operations on its hardware level for the 

optimization of the readout procedure. 

An HRE quantum memory unit utilizes the advanced techniques of quantum machine learning to achieve a significant 

improvement in the retrieval efficiency. 

 

Ch 4 IMPLEMENTATION EXAMPLES OF cv QKD  In the set of general assumptions for the system implementation we 

allow eavesdropper (node E) to have full access to the quantum channel which she is free to control and manipulate. She 

can monitor the public channel but cannot intervene in the conversation between node A and node B which introduces the 

important requirement of an authenticated channel. For her eavesdropping attack, E is allowed to prepare arbitrary 

ancillary states that she gets to interact with the transmitted signal states and subsequently performs measurements on. She 

might be in possession of a quantum memory which allows her to store her states and perform her measurement at a later 

time according to what she learned during the classical post‐processing. The actual degree of information‐theoretic 

security of a given QKD protocol depends strongly on the assumed technological capabilities a potential eavesdropper 

might have. Classified by her powers, we distinguish three different types of eavesdropping attacks (i.e. attempts to obtain 

information on the secret key) that are typically considered in security proofs: Individual attack, Collective attack, 

Coherent attack. A comprehensive analysis of the system behavior within the framework of these assumptions id 

presented. Here, we also present in more details several QKD implementations of specific interest for 6/7G networks. As 

the first step we investigate the performance of QKD over THz band since this band is of interest already for 6G and will 

continue to be of interest for 7G as well. A network architecture of hybrid trusted/untrusted relay based QKD over optical 

backbone networks is also described along with the description of the structure of the nodes in such network. The chapter 

is wrapped up wit a comprehensive discussion on receiver design for QKD. 



Ch 5 qubit PHYSICS  Over the past two decades, rapid developments in the science and engineering of quantum systems 

have advanced the frontier in quantum computation, from the realm of scientific explorations on single isolated quantum 

systems toward the creation and manipulation of multi‐qubit processors [11-12] . In particular, the requirements imposed 

by larger quantum processors have shifted mindset within the community, from solely scientific discovery to the 

development of new, foundational engineering abstractions associated with the design, control, and readout of multiqubit 

quantum systems. The result is the emergence of a new discipline termed quantum engineering, which serves to bridge the 

basic sciences, mathematics, and computer science with fields generally associated with traditional engineering. 

One prominent platform for constructing a multi‐qubit quantum processor involves superconducting qubits, in which 

information is stored in the quantum degrees of freedom of nano fabricated, anharmonic oscillators constructed from 

superconducting circuit elements [1-10]. Alternative platforms, e.g. electron spins in silicon  [13-18] and quantum 

dots  [19 − 22], trapped ions [ 23 − 27] , ultracold atoms  [ 28 − 31], nitrogen‐vacancies in diamonds [ 32 − 33], and 

polarized photons  [34 − 37], have been also developed. In this chapter we review main characteristics of these groups of 

technologies.   
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